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Primate long calls are high-amplitude vocalizations that can be critical in maintaining intragroup
contact and intergroup spacing, and can encode abundant information about a call’s producer, such
as age, sex, and individual identity. Long calls of the wild emperor (Saguinus imperator) and sad-
dleback (Leontocebus weddelli) tamarins were tested for these identity signals using artificial neural
networks, machine-learning models that reduce subjectivity in vocalization classification. To assess
whether modelling could be streamlined by using only factors which were responsible for the
majority of variation within networks, each series of networks was re-trained after implementing
two methods of feature selection. First, networks were trained and run using only the subset of vari-
ables whose weights accounted for >50% of each original network’s variation, as identified by the
networks themselves. In the second, only variables implemented by decision trees in predicting out-
comes were used. Networks predicted dependent variables above chance (>58.7% for sex, >69.2
for age class, and >38.8% for seven to eight individuals), but classification accuracy was not mark-
edly improved by feature selection. Findings are discussed with regard to implications for future

studies on identity signaling in vocalizations and streamlining of data analysis.
© 2018 Acoustical Society of America. https://doi.org/10.1121/1.5046526
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I. INTRODUCTION

Primate long calls—high amplitude long-distance vocal-
izations, sometimes also called loud calls or contact calls—
serve several functions. They can be used to maintain
intergroup spacing and territory defense (Waser, 1977,
Mitani, 1985; Rasoloharijaona et al., 2006; da Cunha and
Jalles-Filho, 2007; Caselli et al., 2014), and for mate defense
and/or assessment (Mitani, 1984; Cowlishaw, 1996;
Geissmann, 1999; Bolt, 2013). They also facilitate the main-
tenance of intragroup cohesion (New World monkeys:
Snowdon and Hodun, 1981; Spehar and Di Fiore, 2013;
Dubreuil et al., 2015; Old World monkeys and lemurs:
Byrne, 1982; Macedonia, 1986; Cheney et al., 1996;
Ramanankirahina et al., 2016; apes: Mitani and Nishida,
1993; White et al., 2015). These functions are made possible
by the broad range of information encoded therein: calls can
convey information regarding external references, such as
location (Snowdon and Hodun, 1981), but also intrinsic qual-
ities of the producer, such as sex, age, and identity (Miller
and Thomas, 2012; Leon et al., 2014; Terleph et al., 2015).

Callitrichids, a diverse family of Neotropical primates,
use species-specific long calls for inter- and intragroup com-
munication (Epple, 1968; Brown et al., 1979; Jorgensen and
French, 1998; Ruiz-Miranda et al., 1999; Lazaro-Perea,
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2001; Windfelder, 2001; de la Torre and Snowdon, 2009).
Long calls can be used by an individual seeking to reunite
with its group after it has become isolated during ranging
and for coordination with fellow group members during ago-
nistic intergroup encounters. For arboreal primates such as
callitrichids, visual contact with other group members can be
hindered by distance or dense tropical forest. Encoding sex
and individual identity in a long call can be important for
maintaining intragroup spacing, during ranging, and in inter-
group encounters (Arnedo et al., 2010; Lemasson and
Hausberger, 2011; Bouchet et al., 2012; Dubreuil et al.,
2015). Similarly, recognizing age class from an individual’s
long call is particularly relevant for infants and juveniles,
who often vocalize to solicit assistance or food from adults,
and who are the most vulnerable when separated from the
rest of their group (Epple, 1968; Chen et al., 2009).
Transmission of the characteristics of a call’s producer in
vocalizations therefore have marked effects on behavior and
survival, and captive studies have confirmed that sex
(Masataka, 1987; Norcross and Newman, 1993, age (Pola
and Snowdon, 1975; Pistorio et al., 2006; Chen et al., 2009),
and individual (Jorgensen and French, 1998; Weiss et al.,
2001; Miller et al., 2010) can be encoded in the acoustic
structure of the long calls of several Callitrichine species.

In the present study we assess whether the long calls of
two species of sympatric wild callitrichids, emperor (Saguinus
imperator) and saddleback (Leontocebus weddelli) tamarins
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can be discriminated by sex, age class, and individual identity.
To our knowledge, neither emperor nor saddleback tamarin
vocalizations have been tested for this suite of identity signals
in the wild. Both species live in cooperatively breeding social
systems, which can have marked effects on the evolution of
vocal communication (Burkart and van Schaik, 2009;
Freeberg et al., 2012). This includes the capacity for transmit-
ting identity signals in vocalizations, which are important to
adult-juvenile interactions, intergroup encounters, dispersal,
and group cohesion (Marten et al., 1977; Freeberg et al.,
2012). We therefore predict that these signals—age, sex, and
identity—will be discernable in the vocalizations of both spe-
cies. A comparison of cooperatively breeding species can con-
trol for social factors, shed light on the adaptive pressures
shaping signal variation, and in this case, help disentangle
more complicated questions regarding how callitrichid behav-
ior affects and is affected by signal variation in the wild.

To test whether vocalizations can be accurately classi-
fied according to identity signals, we use artificial neural net-
works (ANNs), a method of machine learning. ANNS
function analogously to the brain’s neurons. Inputs, such as
bioacoustic measurements, are used to predict outputs, such
as signaler characteristics, via a hidden layer of neurons,
which are connected to inputs via axons (Fig. 1). When the
network is trained, axons are differentially weighted as the
network learns, through an iterative process, which model
best predicts outputs (Reby et al., 1997). After the network
is trained, the result is a web of neurons connected by
weighted axons, where inputs can be classified as outputs
according to the best model using novel datasets. ANNs can
accommodate any number and type of independent varia-
bles, but function best with numeric variables that have been
scaled and centered. ANNs have primarily been used to clas-
sify vocal repertoires and dialects (Orcinus orca: Deecke
et al., 1999; Balaena mysticetus: Potter et al., 1994,
FEulemur macaca: Pozzi et al., 2010), and here we assess the
extension of their applicability to detecting characteristics of
signal producers in primates.

An advantage to neural networks is that they run chiefly
without supervision. Users set certain parameters that define
the space over which the network can explore optimal mod-
els, such as the number of neurons in a hidden layer and the
number of hidden layers, but the networks themselves iden-
tify the best parameters through the iterative process of

Hidden
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Inputs
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FIG. 1. Schematic of an artificial neural network. The model differentially
weights connections between inputs and hidden layer(s) over an iterative
process that results in the best method of predicting outputs.
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model training. Though optimal models do not inherently
use a subset of the original variable set (i.e., neural networks
do not perform feature selection), users can view each varia-
ble’s weight in the final model. Weights range from 0 to
100, where higher, or “heavier,” values indicate higher rela-
tive importance in the model, with all variable weights sum-
ming to 100. These weights can therefore be used to identify
which independent variables are most diagnostic in predict-
ing outcomes in order to optimize models with fewer inputs
for future applications. In order to test whether using highly
weighted variables improve network classification accuracy,
here we re-train each network using only variables that have
been identified by the networks themselves as being highly
weighted. Choosing input variables from the dataset that
minimize statistical noise while preserving important varia-
tion is time-consuming but sometimes critical for model
optimization (Yang and Pederson, 1997; Guyon and
Elisseeff, 2003); however, using weights assigned to varia-
bles during neural network training is one of many methods
of feature selection (Dash and Liu, 1997). Thus, a second
goal of this study is to compare this feature selection method
with one that identifies important variables via decision trees
(Tirelli and Pessani, 2011; Wu, 2009). Decision trees
are supervised learning algorithms that can be used to predict
outcomes using both continuous and categorical independent
variables. The heterogenous population is presented as
a root node, and the population is split into increasingly

Root Node
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Variable X

Sub-node Terminal Node

Decision Point:
Variable Y

Terminal Node
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FIG. 2. Schematic of a decision tree. The algorithm progressively uses vari-
ables at each decision point to create increasingly homogenous clusters until
dependent variables, or terminal nodes, are reached.

Terminal Node
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homogenous sub-nodes using one independent variable at
each “decision point” until outcome variables are isolated
(Fig. 2). To assess whether either method of feature selection
results in better classification rates of novel datasets, we
compare classification accuracies of networks trained on
“heavily weighted” variables and networks trained only on
variables used in constructing decision trees.

Il. METHODS
A. Data collection

Data were collected at the Estacion Biologica Rio Los
Amigos (EBLA) in the Madre de Dios department of Peru
(12°30'-12°36'S and 70°02'-70°09'W) between May and
August, 2014-2016. The study populations included five
groups each of emperor tamarins (Saguinus imperator) (44
unique individuals across three years) and saddleback tamar-
ins (Leontocebus weddelli) (51 unique individuals across
three years). However, because not all individuals are recap-
tured annually due to deaths or disappearances, long calls
were not recorded from all individuals or groups each year
(Table I).

These populations are part of an ongoing mark-recapture
program in place since 2009. Monkeys are processed as a
group, and age-class and sex are noted for each tamarin. Age
classes are assigned as follows: infant = 0-5 % months; juve-
nile = 5 %—9 % months; subadult = 9 2—20 months; adult

= >20 months (Watsa, 2013). Individuals’ identities are con-
firmed across years by the presence of a microchip. Each tam-
arin is also fitted with a temporary beaded collar, replaced
each year, that indicates group, sex, and individual identity,
and given unique a bleach pattern on its tail (see Watsa et al.,
2015 for a detailed protocol). These visual aids are used to
confirm identity during data collection. Data on behavior,
including mating and social systems, have been collected on
emperor tamarins since 2011, and on saddleback tamarins
since 2009 (Watsa, 2013). Vocalizations from untagged indi-
viduals were not included in analyses.

Vocalizations were recorded ad libitum during 15-min
focal follows and during mark-recapture events. Focal fol-
lows, which were randomized to balance data collection
across individuals and groups over the course of each field
season (May—August), were conducted by teams of two
researchers. Using a Zoom H5 or Zoom H6 Handy Recorder
with accompanying shotgun microphone (Zoom North
America, Hauppauge, NY) at the highest available sampling
rates (44-kHz/24-bit or 96-kHz/24-bit, respectively), one
researcher recorded continuously throughout the focal follow
in order to capture vocalizations emitted by the focal indi-
vidual. When a long call occurred, the identity of the pro-
ducer was confirmed by speaking into the recorder. If a long
call was produced by an identified individual outside of a
focal follow, or if the focal individual was out of sight and
another individual began calling, observers initiated an ad

TABLE I. Individuals in the study populations of Saguinus imperator and Leontocebus weddelli whose long calls we recorded from 2014 to 2016, and sample
sizes of long calls for each age-sex class presented in parentheses. AF = Adult female, AM = adult male, SF = subadult female, SM = subadult male, JF
=juvenile female, JM = juvenile male. Adults = >20 months; subadults = 9 %20 months; juveniles = 5 %9 % months (Watsa, 2013). There were no infants
in the study population. Vocalizations from all groups were also recorded during mark-recapture events except where indicated with an asterisk.

Year Group AF AM SF SM JF M Total long call sample size
Saguinus imperator
2014 SI-3 — — — — — 1(2) 2
SI-4 1(2) — — — — 2
2015 SI-1 2 (15) 2 (13) — — — 1(15) 43
SI-2% — — — 1(2) — — 2
SI-3 1(8) 1(16) — 1(5) — — 29
SI-4 1.(7) — — — — — 7
SI-5% 1(3) — () — — — 4
2016 SI-1 2 (28) () — — — — 29
SI-2 19 1(7) — — — — 16
SI-3 3(25) 2 (14) — — — — 39
SI-4 1(13) — — 14 — 1(15) 32
2014-2016 Total long call sample size 110 51 1 11 0 32 205
Leontocebus weddelli
2014 LW-1 1(2) — — — — — 2
Lw-2* 1(1) 1(7) — — — — 8
2015 LW-1 2(12) 2(8) — — — 1(5) 25
LWwW-2 1(14) 2(34) — — 1(2) — 50
LW-3 1(15) 1 (10) — 1(2) 1(4) — 31
LW-4 1(2) 1(8) — — — — 10
LW-5 — 1(8) — — — 1(D) 9
2016 LW-1 1(12) 2 (16) — — — — 28
LwW-2 1(2) 2(23) — — — — 25
LW-3 1(2) 209 — — — — 11
2014-2016 Total long call sample size 61 123 0 2 7 6 199

346  J. Acoust. Soc. Am. 144 (1), July 2018 Robakis et al.



I |
o )
!
i umN'\,"

FIG. 3. Spectrograms of long calls of (A) Saguinus imperator (14 syllables) and (B) Leontocebus weddelli (six syllables), each with one introductory and one
terminal syllable. Introductory and terminal syllables are enclosed by dashed lines.

kHz

libitum recording of the vocalizer until the individual went
out of sight. If an ad libtum follow lasted longer than the
duration of the 15-min focal follow, the original follow was
not resumed, and the next follow on a different animal was
begun. Recordings were also made during 13 group mark-
recapture events from 2014 to 2016 (Table I). Observers
recorded animal vocalizations from 3 to 6 m away.

All data collection was carried out with approval from
the Animal Studies Committees of Washington University in
St. Louis, the University of Missouri—St. Louis, and the
Peruvian Ministry of the Environment (SERFOR), permit
number 193-2015-SERFOR-DGGSPFES.

B. Call measurement

Spectrograms of all long calls were visually inspected in
Raven Pro (Hann window, 5.33 mS window size, 1.2 mS
hop size, and 2048 DFT to correct for different sampling
rates) (Bioacoustics Research Program, 2014), and we dis-
carded those with low signal-to-noise ratios. The long calls
of both species comprise a series of disconnected syllables
(Fig. 3). As such, we made two sets of measurements for
each long call: those based on individual syllables (“syllable
set”) and those based on the call as a whole (“unit set”)
(Table II). We used 31 unique variables, 12 of which were
measurements automatically generated by Raven Pro. Raven
produces certain “robust” measurements based on signal-to-
energy ratios rather than the absolute energy contained
within a selection, thus reducing errors introduced by inter-
observer differences in measurement accuracy and variation
in recording conditions (Table II) (Charif et al., 2010).
During measurement, each syllable was assigned a quality
score from O to 3, with O indicating that one or more of the
measurements was unreliable (for instance, if a syllable was
obscured by a high-amplitude background noise) and 3 indi-
cating full confidence in the measurements. Units were then
given corresponding scores from O to 3, with O indicating
that none of the syllables had been reliably measured, and 3
indicating that all syllables had been reliably measured.
Only syllables and units that had a score of 3 were included
in analyses.

J. Acoust. Soc. Am. 144 (1), July 2018

C. Analysis with the full set of variables

We implemented artificial neural networks to predict sex,
age class, and individual identity (nnet package: Venables and
Ripley, 2002; el071 package: Meyer et al., 2017) (R Core
Team, 2017). We scaled all numerical data and assigned
dummy variables to categorical data using the caret package
(Kuhn et al., 2016) before running each ANN. For each ANN,
we first trained the model on the complete dataset and ran the
best model detected from the training portion on the complete
dataset as well. Then, to account for overfitting we trained the
model on a randomly selected 66.7% of the data and ran the
ANN on the remaining 33.3%. The nnet package automati-
cally implements one hidden layer, which is generally suffi-
cient for most models (de Villiers and Barnard, 1992). We
tuned the parameters of the model by testing two to ten neu-
rons in increments of two, weight decays of 0.001, 0.01, 0.05,
and 0.1, and initial random weights of 0.5 and 1. Because out-
comes will vary dependent on inputs, we ran the networks on
randomized subsets 10 times and took the mean of the results
(Pozzi et al., 2010).

For sex and age class, we trained and ran ANNSs using
both complete syllable- and unit-sets of measurements,
resulting in eight ANNs across both species. For individual
identity, we only included individuals for which we had >10
long calls: eight emperor tamarin individuals and seven sad-
dleback individuals. We ran one ANN on each syllable and
unit set for each species, resulting in four ANNs. In total,
there were 24 networks run with the full variable set: 12
trained and run on 100% of the data, and 12 trained on
67.7% and run on 33.3% to account for overfitting.

D. Analysis with selected features

We ran two additional series of neural networks after
implementing each of two methods of feature selection. In the
first method, we used the caret package (Kuhn et al., 2016) to
identify which variables were assigned the highest weights in
each ANN. We re-ran each network using only the variables
whose weights accounted for >50% of variation within all
ANNS that were trained and run on subset data.

We also used decision trees to identify which variables
were most important in predicting dependent variables. Using
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TABLE II. Syllable (A) and unit (B) measurements taken on long calls produced by Saguinus imperator and Leontocebus weddelli. Parameters marked by
are robust signal measurements automatically generated by Raven Pro. Abbreviations for each variable are in parentheses.

Variable

Description

A. Syllable set

Aggregate entropy (AggE) T
Average entropy (AvgE)
Bandwidth 90% (BW)

Center frequency (CF) ¥

Center time (CT)

Delta time (DT)

Duration 90% (Dur)

First/last syllable (F/L)
Introductory/terminal syllable (I/T)

Total amount of disorder (unitless)

Disorder calculated for each time slice, then averaged over the total sound (unitless)

(Frequency 95%)—(Frequency 5%) (Hz)

Frequency at which the energy within the selection is divided equally in two (Hz)

Time at which the energy within the selection is divided equally in two (seconds)

Time between the start and end points of the selection (seconds)

(Time 95%)—(Time 5%) (seconds)

Designation of initial and final syllables of the unit, excluding introductory and terminal syllables
Subunits at the beginning and/or end of a unit that were (a) a markedly different shape than the rest

of the unit’s syllables; and/or (b) had start frequencies that did not follow the overall arc of the unit (Fig. 3).

Not present in all units.
Frequency 5%, frequency 95% (F5, F95)
Maximum frequency (MF) §
Maximum frequency syllable (MFSyll)
Maximum power (MP) §
Maximum power syllable (MPSyll)
Subunit number (subunit)
Time 5%, Time 95% (T5, T95) |

Frequencies within a selection at 5% and 95% of the energy in the call (Hz)
Frequency with the maximum amount of energy in the selection (Hz)
Syllable with the maximum frequency (binary designation)

Time of maximum amplitude in the selection (seconds)

Syllable with maximum power (binary designation)

Ordinal numbers (1...N) assigned to each discrete syllable in a unit

Time of 5% and 95% of the energy in the selection (seconds)

Year Year (2014-2016) the recording was made

B. Unit set

Delivery rate (DelRate)

Duration average (DurAv)

Number of introductory syllables (IntroNo)
Intersyllable interval average (IntAv)
Maximum frequency syllable number (MFNo)
Maximum frequency syllable index (MFSI)
Maximum power syllable number (MPNo)
Maximum power syllable index (MPSI)
Number of subunits (SubNo)

Subunits calculated (SubCalc)

Number of terminal syllables (TermNo)
Total duration (TD)

(Number of subunits)/(Total duration).

Mean of duration 90% over all syllables

Total number of introductory syllables in the unit

[(Time 5%)—(Time 95% of preceding syllable)]/(Number of subunits)
Subunit number which contains the maximum frequency
(Maximum frequency syllable)/(Total # of subunits)

Subunit number of the subunit which contains the maximum power
(Maximum power syllable)/(Total # of subunits)

Total number of discrete syllables within each unit

(Number of subunits)—(Introductory and terminal syllables)

Total number of terminal syllables within the unit

(Time 95% of last syllable)—(Time 5% of first syllable)

Year Year (2014-2016) the recording was made

the rpart package, which automatically uses tenfold cross-
validation, we employed the default Gini index for splitting,
which uses the probability of a sample being correctly
assigned to a dependent variable to compute binary outcomes
at each decision point (Therneau et al., 2015). We set the min-
imum bucket, or the smallest number of samples allowed per
terminal node, to the smallest sample size of any dependent
variable in the dataset. We set the minimum split, or the mini-
mum number of samples that must be in a node before a split
is attempted, to the smallest sample size of any dependent var-
iable + 1. For example, if there were 1428 observations for
females and 1292 for males in the dataset, the minimum
bucket was set to 1292 and the minimum split was 1293. We
re-ran each ANN with only the variables used by the decision
trees to categorize dependent variables. For all ANNs
attempted after feature selection, we trained and ran each one
on two- and one-thirds of the dataset, respectively.

lll. RESULTS

We analyzed 205 long calls from 20 Saguinus imperator
individuals and 199 long calls from 18 Leontocebus weddelli
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individuals (Table I). Emperor tamarin long calls comprise
an average of 12 =2 SD syllables (average total duration:
3.1s*= 0.7 SD), while saddleback long calls average 6 =2
SD syllables (average total duration: 2.6s = 0.7 SD). Total
units with the numbers of introductory and terminal syllables
are presented in Table III.

A. Identity signaling

If networks were randomly assigning calls to each cate-
gory, we would expect them to do so accurately 50% of the

TABLE III. Number of units with a given number of introductory (“Intro.”)
and terminal (“Term.”) syllables in Saguinus imperator (SIMP) and
Leontocebus weddelli (LWED) long calls.

Number of syllables

Spp. Type 0 1 2 3 4

W
(=)}
-

SIMP Intro. 133 67 11
Term. 205 5 0

LWED Intro. 99 67 24
Term. 170 20 5

W N = O
S~ © O
S = O O
- o o O
SN O O
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time for sex (based on two categories: male and female),
12.5% for emperor tamarin individual identity (based on eight
individuals in the sample) and 14.3% for saddleback tamarin
individual identity (based on seven individuals). There were
no tamarins in the trapped population that fell into the “infant”
category, and so individuals were divided into juvenile, sub-
adult, and adult age classes; age would therefore be accurately
categorized 33% of the time by chance alone. For the com-
plete dataset, accuracy ranged from 83% to 100% for all
dependent variables. Networks using all independent variables
that were trained on a subset of the data reached >57.7%
accuracy for sex, >69.1% accuracy for age, and >38.8%
accuracy for individual (Table IV).

B. Feature selection and predictive accuracy

Variable importance for each ANN, or the weight of
each independent variable as determined by the network
itself, is summarized in Table V. Between five and eight
syllable-set variables (average 5.83 = 0.41 SD) and four to
five unit-set variables (average 4.67 = 0.52 SD) accounted
for the top >50% of variation within each network

TABLE IV. Proportion = SD of long calls accurately classified by each arti-
ficial neural network. Descriptions of syllable and unit variable sets are
found in Table II. Full set = the network was trained and tested on 100% of
the data using all variables; Subset = the network was trained on 66.7% of
the data and tested on 33.3% using all independent variables; HWV = the
network was trained on 66.7% of the data and tested on 33.3% of the data
using only heavily weighted independent variables cumulatively responsible
for >50% of the networks’ variation, as identified by the neural network
itself; DT = the network was trained on 66.7% of the data and tested on
33.3% of the data using only independent variables used for categorization
of dependent variables via decision tree; N = number of samples used in
each network; N® = number of potential outcomes of each dependent vari-
able, with the expected accuracy based on chance alone in parentheses.

(approximately 25%-30% of all variables per set). For the
syllable set, decision trees used 14 variables for emperor
tamarins and 10 variables for saddleback tamarins. For the
unit set, decision trees used nine and 10 variables for
emperor and saddleback tamarins, respectively (Table VI).
Four variables in the syllable set (aggregate entropy, average
entropy, duration 90%, and year) and three in the unit set
(duration average, average intersyllable interval, and year)
were identified as being important for predictions by both
neural networks and decision trees (Table VII).

Using only the variables that were highly weighted
within each species, ANNs predicted dependent variables
with >68% accuracy for the syllable set and >58% for the
unit set (Table IV). Using the decision trees’ variables within
each species, ANNs predicted dependent variables with
>61% accuracy for both the syllable and unit sets. While
accuracy between networks was generally similar, those

TABLE V. Weight of each independent variable for each artificial neural
network (ANN) made using syllable (A) and unit (B) measurement sets for
Saguinus imperator and Leontocebus weddelli. Bolded values in each col-
umn represent measurements cumulatively responsible for >50% of variable
importance within each ANN. See Table II for abbreviations and definitions.

Saguinus imperator Leontocebus weddelli

Variables Data Sex class Age class Individual
Saguinus imperator
Syllable set  Full set 0.908 0.924 0.854
Subset 0.852+0.005 0.864 £0.864 0.755*0.011
HWV 0.812+0.006  0.848 =0.005 0.687 =0.012
DT 0.858 £0.003  0.877=0.004 0.772=0.014
N 2720 2720 1840
Unit set Full Set 0.980 0.976 0.993
Subset 0.577£0.041  0.691 =0.031 0.443 =0.028
HWV 0.587£0.020  0.730=0.008 0.937 =0.018
DT 0.612+0.009  0.692*=0.027 0.969 = 0.021
N 205 205 146
N 2 (0.500) 3(0.334) 8 (0.125)
Leontocebus weddelli
Syllable set  Full Set 0.914 0.995 0.830
Subset 0.709 =0.014  0.890=0.008 0.580 =0.018
HWV 0.706 =0.009  0.892=0.009 0.790 = 0.012
DT 0.712+0.0123  0.901 £0.005 0.743 £0.010
N 1249 1249 853
Unit set Full set 0.985 100 0.985
Subset  0.6296 =0.034  0.926 =0.011  0.388 = 0.020
HWV 0.659 =£0.027  0.904x 0.013  0.974 =0.012
DT 0.613+=0.030  0.900 =0.009  0.602 = 0.020
N 199 199 136
N 2 (0.500) 3(0.334) 7 (0.143)

Syllable Sex Age  Individual Sex Age  Individual
A. Syllable set variable importance (%)

AggE  3.940326 5.811053 4.600082 4.729957 1.9685 4.274391
AvgE  7.702522 5.354826 5.230837 4.315349 3.891026 3.990533
BW 5.82068 4.053813 3.174122 3.322188 4.029787 1.805553
CF 5.179038 6.162214 5.327225 9.749726 4.62074 5.275702
CT 2.953494 3.532069 3.02814 1.154513 2.842708 2.441675
DT 3.125817 3.338087 5.222423 6.545583 4.015891 5.300002
Dur 4.543524 3.848966 6.83099 8.970941 5.294947 3.856782
F5 4.524552 4.115399 3.703291 9.537488 4.177183 3.212521
F95 6.463829 3.711039 4.419039 5.060321 4.085764 2.112292
F/L 6.615663 10.75836 10.45562 4.18962 7.4645 7.721333
/T 12.09765 10.29655 13.14657 4.141274 13.1059 15.89837
MF 5.000211 3.040267 1.75548 5.027742 2.83285 4.136517
MFSyll  3.086  3.548599 4.894219 2.144069 5.891673 4.841391
MP 5.583967 4.562877 3.596555 12.60861 4.869816 5.723543
MPSyll  3.408961 4.249824 5.515104 2.048812 5.164526 4.584367
Subunit 3.475132 1.810198 2.223307 6.379561 5.970645 4.322923
T5 1.92806 2.61306 2.807181 2.698322 2.507503 1.914813
T95 1.978916 2.456957 2.445457 3.082674 2.710058 1.745228
Year 12.57165 16.73584 11.62435  4.293  14.5556 16.84207
B. Unit set variable importance (%)

DelRate 4.308278 5.843962 8.84766 8.10492 10.35755 6.519645
DurAv  10.19142 10.23763 9.68606 6.49499 11.42508 5.725365
IntroNo 8.479541 10.9754 8.86561 6.77214 8.682071 11.2381
IntAv 7.30987 11.60157 11.9187 5.00799 3.498439 5.576761
MFSI  5.210473 7.304105 5.43678  6.3165 6.387437 5.985697
MFNo  7.250412 4.489792 6.90265 3.47786 7.252356 7.241592
MPSI  7.400024 7.411284 4.99587 6.27972 6.316438 3.524178
MPNo  7.861098 5.811811 5.66026 4.69093 4.206163 4.814498
SubNo  6.372955 5.360565 5.48788  4.66481 5.934309 5.138093
SubCalc 6.245634 4.97299 6.33531 9.41189 6.215909 7.292357
TD 3.478281 3.265601 2.57518 4.67049 5.662701 4.148481
TermNo 6.106427 5.618074 8.04462 10.6895 7.645154 10.37212
Year 19.78558 17.10722 15.2434 23.4183 16.41639 22.42312
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using heavily weighted variables (HWV) were much more
accurate in predicting saddleback individual using the unit
set of variables (97.4% accuracy) than decision tree (DT)
networks (60.2% accuracy). Networks run on the full vari-
able set were not notably different than those using selected
features, with the exceptions of emperor tamarin unit set net-
works and saddleback syllable set networks for predicting
individual identity.

IV. DISCUSSION
A. Identity signaling in callitrichids

In keeping with our predictions that tamarin long calls
should be discriminable according to identity signals of their
producers, artificial neural networks accurately classified
calls according to sex, age, and identity well above what
would be predicted by chance alone for both species.
Moreover, vocalizations were roughly equally discriminable
by identity signals in both species. However, much like prior
research on callitrichids, we found that spectrotemporal fea-
tures responsible for variation were not consistent across

emperor and saddleback tamarins. In this study, only seven
of 31 features were used by both neural networks and deci-
sion trees. The spectrotemporal variables were based on
entropy features and various duration features (Tables
VI-VII). Year was also critical in every network across both
species and both measurement sets. The influence of year is
a departure from prior studies on call discrimination that
have not been able to account for resampling of individuals
across years (e.g., Steenbeek and Assink, 1998; Fischer
et al., 2002; Ey et al., 2007; Erb et al., 2013), but supports
earlier research on captive callitrichids indicating that there
is individual continuity in vocalizations within, though not
necessarily across, years (Jorgensen and French, 1998;
Takahashi et al., 2015). Jorgensen and French (1998) tested
only dominant adult Wied’s marmosets for changes in vocal-
izations over time, and while all individuals demonstrated a
significant difference in at least one spectrotemporal feature
across years, it was not always the same feature(s) in each
individual. If these differences were the result of develop-
ment or senescence, we would expect the same features to
change in a similar direction across individuals. Pygmy

TABLE VI. Variables used by each decision tree to predict outcomes using syllable and unit sets of variables (definitions are in TABLE II).

Saguinus imperator

Leontocebus weddelli

Syllable set Sex Age

Individual Sex Age Individual

Aggregate entropy (AggE) T

Average entropy (AvgE) v
Bandwidth 90% (BW)

Center frequency (CF) ¥

Center time (CT) § v
Delta time (DT) v
Duration 90% (Dur) f

First/last syllable (F/L)

Frequency 5% 1 v v
Frequency 95% 1 v
Introductory/terminal syllable (I/T)

Maximum frequency (MF) ¥ 4

AN

AN

Maximum frequency syllable (MESyll)

Maximum power (MP) § v
Maximum power syllable (MPSyll)

Subunit number (subunit)

Time 5%

Time 95% T

Year v

N

AN N

Unit set Sex Age

4 4
4 4

ANANIN
AN NI NN

4 v 4 4

Individual Sex Age Individual

Delivery rate (DelRate)

Duration average (DurAv) v
Number of introductory syllables (IntroNo)

Intersyllable interval average (IntAv) v
Maximum frequency syllable number (MFNo)

Maximum frequency syllable index (MFSI)

Maximum power syllable number (MPNo)

Maximum power syllable index (MPSI) v
Number of Subunits (SubNo)

Subunits calculated (SubCalc) v
Number of terminal syllables (TermNo)

Total duration (TD) v
Year v

4 v v
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TABLE VII. Comparison of variables in the syllable and unit sets of spectro-
temporal measurements of long calls that were selected by the neural network
and decision trees. Variables selected by both methods for both species
are highlighted. Definitions of variables are in Table II. SIMP = Saguinus
imperator; LWED = Leontocebus weddelli.

Neural network  Decision tree

Syllable set SIMP LWED SIMP LWED

4 v
4 v
v

Aggregate entropy (AggE) T
Average entropy (AvgE)
Bandwidth 90% (BW)
Center frequency (CF) ¥
Center time (CT)

Delta time (DT)

Duration 90% (Dur)
First/last syllable (F/L)
Frequency 5% ¥

Frequency 95% t v v v
Introductory/terminal syllable (I/T) 4 v

Maximum frequency (MF) f v v
Maximum frequency syllable (MFSyll)

AN NN
AN NN

AN

AN NN AN
ANANIN
AN

AN
AN
AN

Maximum power (MP) §

Maximum power syllable (MPSyll) v
Subunit number (Subunit) v
Time 5% +

Time 95%

Year v v

SNSSS

4

Neural network Decision tree

Unit set SIMP LWED SIMPLWED

4
v

Delivery rate (DelRate) v
Duration average (DurAv) v
Number of introductory syllables (IntroNo) v
Intersyllable interval average (IntAv) v
Maximum frequency syllable number (MFNo)
Maximum frequency syllable index (MFSI)

AN NI NN
ANANIN
AN NI NN

Maximum power syllable number (MPNo)

AN
AN
AN

Maximum power syllable index (MPSI)
Number of subunits (SubNo) v
Subunits calculated (SubCalc) v
Number of terminal syllables (TermNo)

Total duration (TD) v v
Year v v v

A NNE NN

(Elowson et al., 1992) and common (Takahashi et al., 2015;
Takahashi et al., 2016) marmosets similarly both demon-
strated ontogenetic changes in vocal behavior and produc-
tion that could not be explained by physiology alone:
changes in call structure, such as syllables per second, and
calling rates, or the ratio of infant-typical to adult-typical
calls, were not equal across individuals or litters, with certain
parameters increasing in some while decreasing in others.
The magnitude and direction of change in parameters should
have been even across litters if call structure and rate were
shaped solely by development. Further, the rate of develop-
ment of adult-like spectrotemporal features and call rates
accelerated with increased vocal responses from adults
(Takahashi et al., 2015; Takahashi et al., 2017).

Variables diagnostic in predicting sex are also inconsis-
tent across species. For instance, Norcross and Newman
(1993) found that male golden lion tamarins produced long
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calls of higher average frequency and shorter duration than
females, though Benz et al. (1990) concluded that males’
calls had higher frequencies and demonstrated no significant
difference in duration from females’ calls. Alternatively, a
study on mustached tamarins revealed that average inter-
syllable intervals in contact calls were longer for females
than males (Masataka, 1987). In a captive study of cotton-
top tamarins, Scott et al. (2006) demonstrated that, between
1983 and 2002, sex differences in rates of long call produc-
tion reversed, with females producing long calls more often
than males in the first sample but less often than males in the
second sample. A second test on the same population in
2004 revealed further changes, with some females once
again producing more long calls than males, which the
authors suggest may reflect responses to changes in external
conditions, that is housing pairs (Scott et al., 2006).
Variability in group composition and size across years might
similarly account for intraindividual changes that are unre-
lated to development in this population. Regardless of the
mechanisms driving vocal change over time, however, the
results presented here suggest that, particularly for research-
ers seeking to classify signaler characteristics from vocaliza-
tions, future models should be careful to account for
intraindividual changes in vocalizations on the time axis by
including a time-based variable in the set of predictors.

B. Predictive accuracy of neural networks

Surprisingly, neither method of feature selection was
more effective than simply training them on a subset of the
dataset with all variables. This was true for all outcomes
except for in cases of predicting individual identity; this may
be the result of smaller sample sizes, though even networks
run on the full set of variables nevertheless did markedly bet-
ter than they would have by chance alone. There is currently
no consensus on a formula for determining sample size in
neural networks; though lower or imbalanced sample sizes
can sometimes mean lower predictive accuracy, small or
imbalanced datasets do not necessarily preclude the use of
ANNSs (Deecke et al., 1999; Mazurowski et al., 2008; Pozzi
et al., 2010). Here, for instance, a sample size of 136 saddle-
back vocalizations from seven individuals was sufficient for
38% classification accuracy (versus the expected 14.3%) by
a model using 13 unit-set variables. Though the accuracy of
those networks improved with fewer variables, this supports
the idea that neural networks can function with small sample
sizes, particularly since models run using highly weighted
variables reached roughly equal accuracy to those networks
run using variables chosen by decision trees despite using
about half the number of features. Thus, neural networks
appear to be efficient at predicting identity signals despite a
high ratio of features to samples.

The results presented here indicate that neural networks
are powerful tools for the detection of identity signals in
emperor and saddleback tamarins. That predictive accuracy
is not meaningfully improved after feature selection might
be of particular interest to those attempting to use bioacous-
tic tools to survey primate populations. Long-distance con-
tact vocalizations can be wused for passive acoustic
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monitoring, wherein microphones are placed in a species’
home range and passively detect and record vocalizations
without human supervision. This can be effective for survey-
ing species presence, abundance, and health in a variety of
ecosystems for populations that are remote, unhabituated, or
rare (Campbell et al., 2002; Mennill et al., 2006; Hutto and
Stutzman, 2009; Blumstein et al., 2011; Digby et al., 2013;
Yack et al., 2013; Heinicke et al., 2015; Bryant et al., 2016;
Munger et al., 2016). Reduced restrictions on sample sizes
make neural networks good options for demographic moni-
toring of cryptic or remote groups of species for whom the
collection of large datasets can be challenging. Similarly,
omitting feature selection as a step in data preparation can
drastically increase the efficiency of data processing and
analysis for researchers.
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