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Primate long calls are high-amplitude vocalizations that can be critical in maintaining intragroup

contact and intergroup spacing, and can encode abundant information about a call’s producer, such

as age, sex, and individual identity. Long calls of the wild emperor (Saguinus imperator) and sad-

dleback (Leontocebus weddelli) tamarins were tested for these identity signals using artificial neural

networks, machine-learning models that reduce subjectivity in vocalization classification. To assess

whether modelling could be streamlined by using only factors which were responsible for the

majority of variation within networks, each series of networks was re-trained after implementing

two methods of feature selection. First, networks were trained and run using only the subset of vari-

ables whose weights accounted for �50% of each original network’s variation, as identified by the

networks themselves. In the second, only variables implemented by decision trees in predicting out-

comes were used. Networks predicted dependent variables above chance (�58.7% for sex, �69.2

for age class, and �38.8% for seven to eight individuals), but classification accuracy was not mark-

edly improved by feature selection. Findings are discussed with regard to implications for future

studies on identity signaling in vocalizations and streamlining of data analysis.
VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5046526
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I. INTRODUCTION

Primate long calls—high amplitude long-distance vocal-

izations, sometimes also called loud calls or contact calls—

serve several functions. They can be used to maintain

intergroup spacing and territory defense (Waser, 1977;

Mitani, 1985; Rasoloharijaona et al., 2006; da Cunha and

Jalles-Filho, 2007; Caselli et al., 2014), and for mate defense

and/or assessment (Mitani, 1984; Cowlishaw, 1996;

Geissmann, 1999; Bolt, 2013). They also facilitate the main-

tenance of intragroup cohesion (New World monkeys:
Snowdon and Hodun, 1981; Spehar and Di Fiore, 2013;

Dubreuil et al., 2015; Old World monkeys and lemurs:

Byrne, 1982; Macedonia, 1986; Cheney et al., 1996;

Ramanankirahina et al., 2016; apes: Mitani and Nishida,

1993; White et al., 2015). These functions are made possible

by the broad range of information encoded therein: calls can

convey information regarding external references, such as

location (Snowdon and Hodun, 1981), but also intrinsic qual-

ities of the producer, such as sex, age, and identity (Miller

and Thomas, 2012; Le�on et al., 2014; Terleph et al., 2015).

Callitrichids, a diverse family of Neotropical primates,

use species-specific long calls for inter- and intragroup com-

munication (Epple, 1968; Brown et al., 1979; Jorgensen and

French, 1998; Ruiz-Miranda et al., 1999; Lazaro-Perea,

2001; Windfelder, 2001; de la Torre and Snowdon, 2009).

Long calls can be used by an individual seeking to reunite

with its group after it has become isolated during ranging

and for coordination with fellow group members during ago-

nistic intergroup encounters. For arboreal primates such as

callitrichids, visual contact with other group members can be

hindered by distance or dense tropical forest. Encoding sex

and individual identity in a long call can be important for

maintaining intragroup spacing, during ranging, and in inter-

group encounters (Arnedo et al., 2010; Lemasson and

Hausberger, 2011; Bouchet et al., 2012; Dubreuil et al.,
2015). Similarly, recognizing age class from an individual’s

long call is particularly relevant for infants and juveniles,

who often vocalize to solicit assistance or food from adults,

and who are the most vulnerable when separated from the

rest of their group (Epple, 1968; Chen et al., 2009).

Transmission of the characteristics of a call’s producer in

vocalizations therefore have marked effects on behavior and

survival, and captive studies have confirmed that sex

(Masataka, 1987; Norcross and Newman, 1993, age (Pola

and Snowdon, 1975; Pistorio et al., 2006; Chen et al., 2009),

and individual (Jorgensen and French, 1998; Weiss et al.,
2001; Miller et al., 2010) can be encoded in the acoustic

structure of the long calls of several Callitrichine species.

In the present study we assess whether the long calls of

two species of sympatric wild callitrichids, emperor (Saguinus
imperator) and saddleback (Leontocebus weddelli) tamarinsa)Electronic mail: erobakis@wustl.edu
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can be discriminated by sex, age class, and individual identity.

To our knowledge, neither emperor nor saddleback tamarin

vocalizations have been tested for this suite of identity signals

in the wild. Both species live in cooperatively breeding social

systems, which can have marked effects on the evolution of

vocal communication (Burkart and van Schaik, 2009;

Freeberg et al., 2012). This includes the capacity for transmit-

ting identity signals in vocalizations, which are important to

adult-juvenile interactions, intergroup encounters, dispersal,

and group cohesion (Marten et al., 1977; Freeberg et al.,
2012). We therefore predict that these signals—age, sex, and

identity—will be discernable in the vocalizations of both spe-

cies. A comparison of cooperatively breeding species can con-

trol for social factors, shed light on the adaptive pressures

shaping signal variation, and in this case, help disentangle

more complicated questions regarding how callitrichid behav-

ior affects and is affected by signal variation in the wild.

To test whether vocalizations can be accurately classi-

fied according to identity signals, we use artificial neural net-

works (ANNs), a method of machine learning. ANNs

function analogously to the brain’s neurons. Inputs, such as

bioacoustic measurements, are used to predict outputs, such

as signaler characteristics, via a hidden layer of neurons,

which are connected to inputs via axons (Fig. 1). When the

network is trained, axons are differentially weighted as the

network learns, through an iterative process, which model

best predicts outputs (Reby et al., 1997). After the network

is trained, the result is a web of neurons connected by

weighted axons, where inputs can be classified as outputs

according to the best model using novel datasets. ANNs can

accommodate any number and type of independent varia-

bles, but function best with numeric variables that have been

scaled and centered. ANNs have primarily been used to clas-

sify vocal repertoires and dialects (Orcinus orca: Deecke

et al., 1999; Balaena mysticetus: Potter et al., 1994;

Eulemur macaca: Pozzi et al., 2010), and here we assess the

extension of their applicability to detecting characteristics of

signal producers in primates.

An advantage to neural networks is that they run chiefly

without supervision. Users set certain parameters that define

the space over which the network can explore optimal mod-

els, such as the number of neurons in a hidden layer and the

number of hidden layers, but the networks themselves iden-

tify the best parameters through the iterative process of

model training. Though optimal models do not inherently

use a subset of the original variable set (i.e., neural networks

do not perform feature selection), users can view each varia-

ble’s weight in the final model. Weights range from 0 to

100, where higher, or “heavier,” values indicate higher rela-

tive importance in the model, with all variable weights sum-

ming to 100. These weights can therefore be used to identify

which independent variables are most diagnostic in predict-

ing outcomes in order to optimize models with fewer inputs

for future applications. In order to test whether using highly

weighted variables improve network classification accuracy,

here we re-train each network using only variables that have

been identified by the networks themselves as being highly

weighted. Choosing input variables from the dataset that

minimize statistical noise while preserving important varia-

tion is time-consuming but sometimes critical for model

optimization (Yang and Pederson, 1997; Guyon and

Elisseeff, 2003); however, using weights assigned to varia-

bles during neural network training is one of many methods

of feature selection (Dash and Liu, 1997). Thus, a second

goal of this study is to compare this feature selection method

with one that identifies important variables via decision trees

(Tirelli and Pessani, 2011; Wu, 2009). Decision trees

are supervised learning algorithms that can be used to predict

outcomes using both continuous and categorical independent

variables. The heterogenous population is presented as

a root node, and the population is split into increasingly

FIG. 2. Schematic of a decision tree. The algorithm progressively uses vari-

ables at each decision point to create increasingly homogenous clusters until

dependent variables, or terminal nodes, are reached.

FIG. 1. Schematic of an artificial neural network. The model differentially

weights connections between inputs and hidden layer(s) over an iterative

process that results in the best method of predicting outputs.
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homogenous sub-nodes using one independent variable at

each “decision point” until outcome variables are isolated

(Fig. 2). To assess whether either method of feature selection

results in better classification rates of novel datasets, we

compare classification accuracies of networks trained on

“heavily weighted” variables and networks trained only on

variables used in constructing decision trees.

II. METHODS

A. Data collection

Data were collected at the Estaci�on Biologica Rio Los

Amigos (EBLA) in the Madre de Dios department of Peru

(12�300–12�360S and 70�020–70�090W) between May and

August, 2014–2016. The study populations included five

groups each of emperor tamarins (Saguinus imperator) (44

unique individuals across three years) and saddleback tamar-

ins (Leontocebus weddelli) (51 unique individuals across

three years). However, because not all individuals are recap-

tured annually due to deaths or disappearances, long calls

were not recorded from all individuals or groups each year

(Table I).

These populations are part of an ongoing mark-recapture

program in place since 2009. Monkeys are processed as a

group, and age-class and sex are noted for each tamarin. Age

classes are assigned as follows: infant ¼ 0–5 3
4

months; juve-

nile ¼ 5 3
4

– 9 3
4

months; subadult ¼ 9 3
4
–20 months; adult

¼>20 months (Watsa, 2013). Individuals’ identities are con-

firmed across years by the presence of a microchip. Each tam-

arin is also fitted with a temporary beaded collar, replaced

each year, that indicates group, sex, and individual identity,

and given unique a bleach pattern on its tail (see Watsa et al.,
2015 for a detailed protocol). These visual aids are used to

confirm identity during data collection. Data on behavior,

including mating and social systems, have been collected on

emperor tamarins since 2011, and on saddleback tamarins

since 2009 (Watsa, 2013). Vocalizations from untagged indi-

viduals were not included in analyses.

Vocalizations were recorded ad libitum during 15-min

focal follows and during mark-recapture events. Focal fol-

lows, which were randomized to balance data collection

across individuals and groups over the course of each field

season (May–August), were conducted by teams of two

researchers. Using a Zoom H5 or Zoom H6 Handy Recorder

with accompanying shotgun microphone (Zoom North

America, Hauppauge, NY) at the highest available sampling

rates (44-kHz/24-bit or 96-kHz/24-bit, respectively), one

researcher recorded continuously throughout the focal follow

in order to capture vocalizations emitted by the focal indi-

vidual. When a long call occurred, the identity of the pro-

ducer was confirmed by speaking into the recorder. If a long

call was produced by an identified individual outside of a

focal follow, or if the focal individual was out of sight and

another individual began calling, observers initiated an ad

TABLE I. Individuals in the study populations of Saguinus imperator and Leontocebus weddelli whose long calls we recorded from 2014 to 2016, and sample

sizes of long calls for each age-sex class presented in parentheses. AF ¼ Adult female, AM ¼ adult male, SF ¼ subadult female, SM ¼ subadult male, JF

¼ juvenile female, JM ¼ juvenile male. Adults ¼ >20 months; subadults ¼ 9 3
4
–20 months; juveniles ¼ 5 3

4
–9 3

4
months (Watsa, 2013). There were no infants

in the study population. Vocalizations from all groups were also recorded during mark-recapture events except where indicated with an asterisk.

Year Group AF AM SF SM JF JM Total long call sample size

Saguinus imperator

2014 SI-3 — — — — — 1 (2) 2

SI-4 1 (2) — — — — 2

2015 SI-1 2 (15) 2 (13) — — — 1 (15) 43

SI-2* — — — 1 (2) — — 2

SI-3 1 (8) 1 (16) — 1 (5) — — 29

SI-4 1 (7) — — — — — 7

SI-5* 1 (3) — 1 (1) — — — 4

2016 SI-1 2 (28) 1 (1) — — — — 29

SI-2 1 (9) 1 (7) — — — — 16

SI-3 3 (25) 2 (14) — — — — 39

SI-4 1 (13) — — 1 (4) — 1 (15) 32

2014–2016 Total long call sample size 110 51 1 11 0 32 205

Leontocebus weddelli

2014 LW-1 1 (2) — — — — — 2

LW-2* 1(1) 1 (7) — — — — 8

2015 LW-1 2 (12) 2 (8) — — — 1 (5) 25

LW-2 1 (14) 2 (34) — — 1 (2) — 50

LW-3 1 (15) 1 (10) — 1 (2) 1 (4) — 31

LW-4 1 (2) 1 (8) — — — — 10

LW-5 — 1 (8) — — — 1 (1) 9

2016 LW-1 1 (12) 2 (16) — — — — 28

LW-2 1 (2) 2 (23) — — — — 25

LW-3 1 (2) 2 (9) — — — — 11

2014–2016 Total long call sample size 61 123 0 2 7 6 199
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libitum recording of the vocalizer until the individual went

out of sight. If an ad libtum follow lasted longer than the

duration of the 15-min focal follow, the original follow was

not resumed, and the next follow on a different animal was

begun. Recordings were also made during 13 group mark-

recapture events from 2014 to 2016 (Table I). Observers

recorded animal vocalizations from 3 to 6 m away.

All data collection was carried out with approval from

the Animal Studies Committees of Washington University in

St. Louis, the University of Missouri–St. Louis, and the

Peruvian Ministry of the Environment (SERFOR), permit

number 193-2015-SERFOR-DGGSPFFS.

B. Call measurement

Spectrograms of all long calls were visually inspected in

Raven Pro (Hann window, 5.33 mS window size, 1.2 mS

hop size, and 2048 DFT to correct for different sampling

rates) (Bioacoustics Research Program, 2014), and we dis-

carded those with low signal-to-noise ratios. The long calls

of both species comprise a series of disconnected syllables

(Fig. 3). As such, we made two sets of measurements for

each long call: those based on individual syllables (“syllable

set”) and those based on the call as a whole (“unit set”)

(Table II). We used 31 unique variables, 12 of which were

measurements automatically generated by Raven Pro. Raven

produces certain “robust” measurements based on signal-to-

energy ratios rather than the absolute energy contained

within a selection, thus reducing errors introduced by inter-

observer differences in measurement accuracy and variation

in recording conditions (Table II) (Charif et al., 2010).

During measurement, each syllable was assigned a quality

score from 0 to 3, with 0 indicating that one or more of the

measurements was unreliable (for instance, if a syllable was

obscured by a high-amplitude background noise) and 3 indi-

cating full confidence in the measurements. Units were then

given corresponding scores from 0 to 3, with 0 indicating

that none of the syllables had been reliably measured, and 3

indicating that all syllables had been reliably measured.

Only syllables and units that had a score of 3 were included

in analyses.

C. Analysis with the full set of variables

We implemented artificial neural networks to predict sex,

age class, and individual identity (nnet package: Venables and

Ripley, 2002; e1071 package: Meyer et al., 2017) (R Core

Team, 2017). We scaled all numerical data and assigned

dummy variables to categorical data using the caret package

(Kuhn et al., 2016) before running each ANN. For each ANN,

we first trained the model on the complete dataset and ran the

best model detected from the training portion on the complete

dataset as well. Then, to account for overfitting we trained the

model on a randomly selected 66.7% of the data and ran the

ANN on the remaining 33.3%. The nnet package automati-

cally implements one hidden layer, which is generally suffi-

cient for most models (de Villiers and Barnard, 1992). We

tuned the parameters of the model by testing two to ten neu-

rons in increments of two, weight decays of 0.001, 0.01, 0.05,

and 0.1, and initial random weights of 0.5 and 1. Because out-

comes will vary dependent on inputs, we ran the networks on

randomized subsets 10 times and took the mean of the results

(Pozzi et al., 2010).

For sex and age class, we trained and ran ANNs using

both complete syllable- and unit-sets of measurements,

resulting in eight ANNs across both species. For individual

identity, we only included individuals for which we had �10

long calls: eight emperor tamarin individuals and seven sad-

dleback individuals. We ran one ANN on each syllable and

unit set for each species, resulting in four ANNs. In total,

there were 24 networks run with the full variable set: 12

trained and run on 100% of the data, and 12 trained on

67.7% and run on 33.3% to account for overfitting.

D. Analysis with selected features

We ran two additional series of neural networks after

implementing each of two methods of feature selection. In the

first method, we used the caret package (Kuhn et al., 2016) to

identify which variables were assigned the highest weights in

each ANN. We re-ran each network using only the variables

whose weights accounted for �50% of variation within all

ANNs that were trained and run on subset data.

We also used decision trees to identify which variables

were most important in predicting dependent variables. Using

FIG. 3. Spectrograms of long calls of (A) Saguinus imperator (14 syllables) and (B) Leontocebus weddelli (six syllables), each with one introductory and one

terminal syllable. Introductory and terminal syllables are enclosed by dashed lines.
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the rpart package, which automatically uses tenfold cross-

validation, we employed the default Gini index for splitting,

which uses the probability of a sample being correctly

assigned to a dependent variable to compute binary outcomes

at each decision point (Therneau et al., 2015). We set the min-

imum bucket, or the smallest number of samples allowed per

terminal node, to the smallest sample size of any dependent

variable in the dataset. We set the minimum split, or the mini-

mum number of samples that must be in a node before a split

is attempted, to the smallest sample size of any dependent var-

iable þ 1. For example, if there were 1428 observations for

females and 1292 for males in the dataset, the minimum

bucket was set to 1292 and the minimum split was 1293. We

re-ran each ANN with only the variables used by the decision

trees to categorize dependent variables. For all ANNs

attempted after feature selection, we trained and ran each one

on two- and one-thirds of the dataset, respectively.

III. RESULTS

We analyzed 205 long calls from 20 Saguinus imperator
individuals and 199 long calls from 18 Leontocebus weddelli

individuals (Table I). Emperor tamarin long calls comprise

an average of 12 6 2 SD syllables (average total duration:

3.1 s 6 0.7 SD), while saddleback long calls average 6 6 2

SD syllables (average total duration: 2.6 s 6 0.7 SD). Total

units with the numbers of introductory and terminal syllables

are presented in Table III.

A. Identity signaling

If networks were randomly assigning calls to each cate-

gory, we would expect them to do so accurately 50% of the

TABLE II. Syllable (A) and unit (B) measurements taken on long calls produced by Saguinus imperator and Leontocebus weddelli. Parameters marked by †

are robust signal measurements automatically generated by Raven Pro. Abbreviations for each variable are in parentheses.

Variable Description

A. Syllable set

Aggregate entropy (AggE) † Total amount of disorder (unitless)

Average entropy (AvgE) † Disorder calculated for each time slice, then averaged over the total sound (unitless)

Bandwidth 90% (BW) † (Frequency 95%)–(Frequency 5%) (Hz)

Center frequency (CF) † Frequency at which the energy within the selection is divided equally in two (Hz)

Center time (CT) † Time at which the energy within the selection is divided equally in two (seconds)

Delta time (DT) Time between the start and end points of the selection (seconds)

Duration 90% (Dur) † (Time 95%)–(Time 5%) (seconds)

First/last syllable (F/L) Designation of initial and final syllables of the unit, excluding introductory and terminal syllables

Introductory/terminal syllable (I/T) Subunits at the beginning and/or end of a unit that were (a) a markedly different shape than the rest

of the unit’s syllables; and/or (b) had start frequencies that did not follow the overall arc of the unit (Fig. 3).

Not present in all units.

Frequency 5%, frequency 95% (F5, F95) † Frequencies within a selection at 5% and 95% of the energy in the call (Hz)

Maximum frequency (MF) † Frequency with the maximum amount of energy in the selection (Hz)

Maximum frequency syllable (MFSyll) Syllable with the maximum frequency (binary designation)

Maximum power (MP) † Time of maximum amplitude in the selection (seconds)

Maximum power syllable (MPSyll) Syllable with maximum power (binary designation)

Subunit number (subunit) Ordinal numbers (1…N) assigned to each discrete syllable in a unit

Time 5%, Time 95% (T5, T95) † Time of 5% and 95% of the energy in the selection (seconds)

Year Year (2014–2016) the recording was made

B. Unit set

Delivery rate (DelRate) (Number of subunits)/(Total duration).

Duration average (DurAv) Mean of duration 90% over all syllables

Number of introductory syllables (IntroNo) Total number of introductory syllables in the unit

Intersyllable interval average (IntAv) [(Time 5%)–(Time 95% of preceding syllable)]/(Number of subunits)

Maximum frequency syllable number (MFNo) Subunit number which contains the maximum frequency

Maximum frequency syllable index (MFSI) (Maximum frequency syllable)/(Total # of subunits)

Maximum power syllable number (MPNo) Subunit number of the subunit which contains the maximum power

Maximum power syllable index (MPSI) (Maximum power syllable)/(Total # of subunits)

Number of subunits (SubNo) Total number of discrete syllables within each unit

Subunits calculated (SubCalc) (Number of subunits)–(Introductory and terminal syllables)

Number of terminal syllables (TermNo) Total number of terminal syllables within the unit

Total duration (TD) (Time 95% of last syllable)–(Time 5% of first syllable)

Year Year (2014–2016) the recording was made

TABLE III. Number of units with a given number of introductory (“Intro.”)

and terminal (“Term.”) syllables in Saguinus imperator (SIMP) and

Leontocebus weddelli (LWED) long calls.

Spp. Type

Number of syllables

0 1 2 3 4 5 6 7

SIMP Intro. 133 67 11 0 0 0 0 0

Term. 205 5 0 1 0 0 0 0

LWED Intro. 99 67 24 2 4 1 0 2

Term. 170 20 5 3 0 0 1 0
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time for sex (based on two categories: male and female),

12.5% for emperor tamarin individual identity (based on eight

individuals in the sample) and 14.3% for saddleback tamarin

individual identity (based on seven individuals). There were

no tamarins in the trapped population that fell into the “infant”

category, and so individuals were divided into juvenile, sub-

adult, and adult age classes; age would therefore be accurately

categorized 33% of the time by chance alone. For the com-

plete dataset, accuracy ranged from 83% to 100% for all

dependent variables. Networks using all independent variables

that were trained on a subset of the data reached �57.7%

accuracy for sex, �69.1% accuracy for age, and �38.8%

accuracy for individual (Table IV).

B. Feature selection and predictive accuracy

Variable importance for each ANN, or the weight of

each independent variable as determined by the network

itself, is summarized in Table V. Between five and eight

syllable-set variables (average 5.83 6 0.41 SD) and four to

five unit-set variables (average 4.67 6 0.52 SD) accounted

for the top �50% of variation within each network

(approximately 25%–30% of all variables per set). For the

syllable set, decision trees used 14 variables for emperor

tamarins and 10 variables for saddleback tamarins. For the

unit set, decision trees used nine and 10 variables for

emperor and saddleback tamarins, respectively (Table VI).

Four variables in the syllable set (aggregate entropy, average

entropy, duration 90%, and year) and three in the unit set

(duration average, average intersyllable interval, and year)

were identified as being important for predictions by both

neural networks and decision trees (Table VII).

Using only the variables that were highly weighted

within each species, ANNs predicted dependent variables

with �68% accuracy for the syllable set and �58% for the

unit set (Table IV). Using the decision trees’ variables within

each species, ANNs predicted dependent variables with

�61% accuracy for both the syllable and unit sets. While

accuracy between networks was generally similar, those

TABLE IV. Proportion 6 SD of long calls accurately classified by each arti-

ficial neural network. Descriptions of syllable and unit variable sets are

found in Table II. Full set ¼ the network was trained and tested on 100% of

the data using all variables; Subset ¼ the network was trained on 66.7% of

the data and tested on 33.3% using all independent variables; HWV ¼ the

network was trained on 66.7% of the data and tested on 33.3% of the data

using only heavily weighted independent variables cumulatively responsible

for �50% of the networks’ variation, as identified by the neural network

itself; DT ¼ the network was trained on 66.7% of the data and tested on

33.3% of the data using only independent variables used for categorization

of dependent variables via decision tree; N ¼ number of samples used in

each network; Ndv ¼ number of potential outcomes of each dependent vari-

able, with the expected accuracy based on chance alone in parentheses.

Variables Data Sex class Age class Individual

Saguinus imperator

Syllable set Full set 0.908 0.924 0.854

Subset 0.852 6 0.005 0.864 6 0.864 0.755 6 0.011

HWV 0.812 6 0.006 0.848 6 0.005 0.687 6 0.012

DT 0.858 6 0.003 0.877 6 0.004 0.772 6 0.014

N 2720 2720 1840

Unit set Full Set 0.980 0.976 0.993

Subset 0.577 6 0.041 0.691 6 0.031 0.443 6 0.028

HWV 0.587 6 0.020 0.730 6 0.008 0.937 6 0.018

DT 0.612 6 0.009 0.692 6 0.027 0.969 6 0.021

N 205 205 146

Ndv 2 (0.500) 3 (0.334) 8 (0.125)

Leontocebus weddelli

Syllable set Full Set 0.914 0.995 0.830

Subset 0.709 6 0.014 0.890 6 0.008 0.580 6 0.018

HWV 0.706 6 0.009 0.892 6 0.009 0.790 6 0.012

DT 0.712 6 0.0123 0.901 6 0.005 0.743 6 0.010

N 1249 1249 853

Unit set Full set 0.985 100 0.985

Subset 0.6296 6 0.034 0.926 6 0.011 0.388 6 0.020

HWV 0.659 6 0.027 0.9046 0.013 0.974 6 0.012

DT 0.613 6 0.030 0.900 6 0.009 0.602 6 0.020

N 199 199 136

Ndv 2 (0.500) 3 (0.334) 7 (0.143)

TABLE V. Weight of each independent variable for each artificial neural

network (ANN) made using syllable (A) and unit (B) measurement sets for

Saguinus imperator and Leontocebus weddelli. Bolded values in each col-

umn represent measurements cumulatively responsible for �50% of variable

importance within each ANN. See Table II for abbreviations and definitions.

Saguinus imperator Leontocebus weddelli

Syllable Sex Age Individual Sex Age Individual

A. Syllable set variable importance (%)

AggE 3.940326 5.811053 4.600082 4.729957 1.9685 4.274391

AvgE 7.702522 5.354826 5.230837 4.315349 3.891026 3.990533

BW 5.82068 4.053813 3.174122 3.322188 4.029787 1.805553

CF 5.179038 6.162214 5.327225 9.749726 4.62074 5.275702

CT 2.953494 3.532069 3.02814 1.154513 2.842708 2.441675

DT 3.125817 3.338087 5.222423 6.545583 4.015891 5.300002

Dur 4.543524 3.848966 6.83099 8.970941 5.294947 3.856782

F5 4.524552 4.115399 3.703291 9.537488 4.177183 3.212521

F95 6.463829 3.711039 4.419039 5.060321 4.085764 2.112292

F/L 6.615663 10.75836 10.45562 4.18962 7.4645 7.721333

I/T 12.09765 10.29655 13.14657 4.141274 13.1059 15.89837

MF 5.000211 3.040267 1.75548 5.027742 2.83285 4.136517

MFSyll 3.086 3.548599 4.894219 2.144069 5.891673 4.841391

MP 5.583967 4.562877 3.596555 12.60861 4.869816 5.723543

MPSyll 3.408961 4.249824 5.515104 2.048812 5.164526 4.584367

Subunit 3.475132 1.810198 2.223307 6.379561 5.970645 4.322923

T5 1.92806 2.61306 2.807181 2.698322 2.507503 1.914813

T95 1.978916 2.456957 2.445457 3.082674 2.710058 1.745228

Year 12.57165 16.73584 11.62435 4.293 14.5556 16.84207

B. Unit set variable importance (%)

DelRate 4.308278 5.843962 8.84766 8.10492 10.35755 6.519645

DurAv 10.19142 10.23763 9.68606 6.49499 11.42508 5.725365

IntroNo 8.479541 10.9754 8.86561 6.77214 8.682071 11.2381

IntAv 7.30987 11.60157 11.9187 5.00799 3.498439 5.576761

MFSI 5.210473 7.304105 5.43678 6.3165 6.387437 5.985697

MFNo 7.250412 4.489792 6.90265 3.47786 7.252356 7.241592

MPSI 7.400024 7.411284 4.99587 6.27972 6.316438 3.524178

MPNo 7.861098 5.811811 5.66026 4.69093 4.206163 4.814498

SubNo 6.372955 5.360565 5.48788 4.66481 5.934309 5.138093

SubCalc 6.245634 4.97299 6.33531 9.41189 6.215909 7.292357

TD 3.478281 3.265601 2.57518 4.67049 5.662701 4.148481

TermNo 6.106427 5.618074 8.04462 10.6895 7.645154 10.37212

Year 19.78558 17.10722 15.2434 23.4183 16.41639 22.42312

J. Acoust. Soc. Am. 144 (1), July 2018 Robakis et al. 349



using heavily weighted variables (HWV) were much more

accurate in predicting saddleback individual using the unit

set of variables (97.4% accuracy) than decision tree (DT)

networks (60.2% accuracy). Networks run on the full vari-

able set were not notably different than those using selected

features, with the exceptions of emperor tamarin unit set net-

works and saddleback syllable set networks for predicting

individual identity.

IV. DISCUSSION

A. Identity signaling in callitrichids

In keeping with our predictions that tamarin long calls

should be discriminable according to identity signals of their

producers, artificial neural networks accurately classified

calls according to sex, age, and identity well above what

would be predicted by chance alone for both species.

Moreover, vocalizations were roughly equally discriminable

by identity signals in both species. However, much like prior

research on callitrichids, we found that spectrotemporal fea-

tures responsible for variation were not consistent across

emperor and saddleback tamarins. In this study, only seven

of 31 features were used by both neural networks and deci-

sion trees. The spectrotemporal variables were based on

entropy features and various duration features (Tables

VI–VII). Year was also critical in every network across both

species and both measurement sets. The influence of year is

a departure from prior studies on call discrimination that

have not been able to account for resampling of individuals

across years (e.g., Steenbeek and Assink, 1998; Fischer

et al., 2002; Ey et al., 2007; Erb et al., 2013), but supports

earlier research on captive callitrichids indicating that there

is individual continuity in vocalizations within, though not

necessarily across, years (Jorgensen and French, 1998;

Takahashi et al., 2015). Jorgensen and French (1998) tested

only dominant adult Wied’s marmosets for changes in vocal-

izations over time, and while all individuals demonstrated a

significant difference in at least one spectrotemporal feature

across years, it was not always the same feature(s) in each

individual. If these differences were the result of develop-

ment or senescence, we would expect the same features to

change in a similar direction across individuals. Pygmy

TABLE VI. Variables used by each decision tree to predict outcomes using syllable and unit sets of variables (definitions are in TABLE II).

Saguinus imperator Leontocebus weddelli

Syllable set Sex Age Individual Sex Age Individual

Aggregate entropy (AggE) † � � � �

Average entropy (AvgE) † � � � � � �

Bandwidth 90% (BW) † � � �

Center frequency (CF) † � �

Center time (CT) † � �

Delta time (DT) � � � � � �

Duration 90% (Dur) † � � � �

First/last syllable (F/L)

Frequency 5% † � � � � �

Frequency 95% † � � � �

Introductory/terminal syllable (I/T) �

Maximum frequency (MF) † � �

Maximum frequency syllable (MFSyll)

Maximum power (MP) † � � � � �

Maximum power syllable (MPSyll)

Subunit number (subunit) � � �

Time 5% † � �

Time 95% † �

Year � � � � � �

Unit set Sex Age Individual Sex Age Individual

Delivery rate (DelRate) � � � �

Duration average (DurAv) � � �

Number of introductory syllables (IntroNo) � �

Intersyllable interval average (IntAv) � � � �

Maximum frequency syllable number (MFNo) � �

Maximum frequency syllable index (MFSI) � �

Maximum power syllable number (MPNo)

Maximum power syllable index (MPSI) � � � �

Number of Subunits (SubNo) �

Subunits calculated (SubCalc) �

Number of terminal syllables (TermNo) �

Total duration (TD) � � �

Year � � �
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(Elowson et al., 1992) and common (Takahashi et al., 2015;

Takahashi et al., 2016) marmosets similarly both demon-

strated ontogenetic changes in vocal behavior and produc-

tion that could not be explained by physiology alone:

changes in call structure, such as syllables per second, and

calling rates, or the ratio of infant-typical to adult-typical

calls, were not equal across individuals or litters, with certain

parameters increasing in some while decreasing in others.

The magnitude and direction of change in parameters should

have been even across litters if call structure and rate were

shaped solely by development. Further, the rate of develop-

ment of adult-like spectrotemporal features and call rates

accelerated with increased vocal responses from adults

(Takahashi et al., 2015; Takahashi et al., 2017).

Variables diagnostic in predicting sex are also inconsis-

tent across species. For instance, Norcross and Newman

(1993) found that male golden lion tamarins produced long

calls of higher average frequency and shorter duration than

females, though Benz et al. (1990) concluded that males’

calls had higher frequencies and demonstrated no significant

difference in duration from females’ calls. Alternatively, a

study on mustached tamarins revealed that average inter-

syllable intervals in contact calls were longer for females

than males (Masataka, 1987). In a captive study of cotton-

top tamarins, Scott et al. (2006) demonstrated that, between

1983 and 2002, sex differences in rates of long call produc-

tion reversed, with females producing long calls more often

than males in the first sample but less often than males in the

second sample. A second test on the same population in

2004 revealed further changes, with some females once

again producing more long calls than males, which the

authors suggest may reflect responses to changes in external

conditions, that is housing pairs (Scott et al., 2006).

Variability in group composition and size across years might

similarly account for intraindividual changes that are unre-

lated to development in this population. Regardless of the

mechanisms driving vocal change over time, however, the

results presented here suggest that, particularly for research-

ers seeking to classify signaler characteristics from vocaliza-

tions, future models should be careful to account for

intraindividual changes in vocalizations on the time axis by

including a time-based variable in the set of predictors.

B. Predictive accuracy of neural networks

Surprisingly, neither method of feature selection was

more effective than simply training them on a subset of the

dataset with all variables. This was true for all outcomes

except for in cases of predicting individual identity; this may

be the result of smaller sample sizes, though even networks

run on the full set of variables nevertheless did markedly bet-

ter than they would have by chance alone. There is currently

no consensus on a formula for determining sample size in

neural networks; though lower or imbalanced sample sizes

can sometimes mean lower predictive accuracy, small or

imbalanced datasets do not necessarily preclude the use of

ANNs (Deecke et al., 1999; Mazurowski et al., 2008; Pozzi

et al., 2010). Here, for instance, a sample size of 136 saddle-

back vocalizations from seven individuals was sufficient for

38% classification accuracy (versus the expected 14.3%) by

a model using 13 unit-set variables. Though the accuracy of

those networks improved with fewer variables, this supports

the idea that neural networks can function with small sample

sizes, particularly since models run using highly weighted

variables reached roughly equal accuracy to those networks

run using variables chosen by decision trees despite using

about half the number of features. Thus, neural networks

appear to be efficient at predicting identity signals despite a

high ratio of features to samples.

The results presented here indicate that neural networks

are powerful tools for the detection of identity signals in

emperor and saddleback tamarins. That predictive accuracy

is not meaningfully improved after feature selection might

be of particular interest to those attempting to use bioacous-

tic tools to survey primate populations. Long-distance con-

tact vocalizations can be used for passive acoustic

TABLE VII. Comparison of variables in the syllable and unit sets of spectro-

temporal measurements of long calls that were selected by the neural network

and decision trees. Variables selected by both methods for both species

are highlighted. Definitions of variables are in Table II. SIMP ¼ Saguinus

imperator; LWED¼ Leontocebus weddelli.

Neural network Decision tree

Syllable set SIMP LWED SIMP LWED

Aggregate entropy (AggE) † � � � �

Average entropy (AvgE) † � � � �

Bandwidth 90% (BW) † � � �

Center frequency (CF) † � � �

Center time (CT) † �

Delta time (DT) � � �

Duration 90% (Dur) † � � � �

First/last syllable (F/L) � �

Frequency 5% † � � �

Frequency 95% † � � �

Introductory/terminal syllable (I/T) � �

Maximum frequency (MF) † � �

Maximum frequency syllable (MFSyll) �

Maximum power (MP) † � � �

Maximum power syllable (MPSyll) �

Subunit number (Subunit) � � �

Time 5% † �

Time 95% † �

Year � � � �

Neural network Decision tree

Unit set SIMP LWED SIMP LWED

Delivery rate (DelRate) � � �

Duration average (DurAv) � � � �

Number of introductory syllables (IntroNo) � � �

Intersyllable interval average (IntAv) � � � �

Maximum frequency syllable number (MFNo) � �

Maximum frequency syllable index (MFSI) � �

Maximum power syllable number (MPNo) � �

Maximum power syllable index (MPSI) � � �

Number of subunits (SubNo) �

Subunits calculated (SubCalc) � �

Number of terminal syllables (TermNo) �

Total duration (TD) � � �

Year � � � �
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monitoring, wherein microphones are placed in a species’

home range and passively detect and record vocalizations

without human supervision. This can be effective for survey-

ing species presence, abundance, and health in a variety of

ecosystems for populations that are remote, unhabituated, or

rare (Campbell et al., 2002; Mennill et al., 2006; Hutto and

Stutzman, 2009; Blumstein et al., 2011; Digby et al., 2013;

Yack et al., 2013; Heinicke et al., 2015; Bryant et al., 2016;

Munger et al., 2016). Reduced restrictions on sample sizes

make neural networks good options for demographic moni-

toring of cryptic or remote groups of species for whom the

collection of large datasets can be challenging. Similarly,

omitting feature selection as a step in data preparation can

drastically increase the efficiency of data processing and

analysis for researchers.
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